Answer:
[tex]\large \boxed{2}[/tex]
Step-by-step explanation:
The formula for the nth term of a geometric sequence is
aₙ = a₁rⁿ⁻¹
In your geometric sequence, a₁ = 4 and a₁₃ = 16 384.
[tex]\begin{array}{rcl}16384 & = & 4r^{(13 - 1)}}\\16384 & = & 4r^{12}\\4096 & = & r^{12}\\3.6124 & = & 12 \log r\\0.30102 & = & \log r\\r & = & 10^{0.30102}\\ & = & \mathbf{2}\\\end{array}\\\text{The common ratio is $\large \boxed{\mathbf{2}}$}[/tex]
Check:
[tex]\begin{array}{rcl}16384 & = & 4(2)^{12}\\16384 & = & 4(4096)\\16384 & = & 16384\\\end{array}[/tex]
It checks.