Answer with Step-by-step explanation:
We are given that
[tex]T(x,y,z)=\frac{14}{5+x^2+y^2}[/tex]
We have to find the rate of change of temperature with respect to distance at the point (2,2) in the x- direction and the y- direction.
[tex]\frac{\partial T'(x,y)}{\partial x}=-\frac{28x}{(5+x^2+y^2)^2}[/tex]
[tex]\frac{\partial T'(2,2)}{\partial x}=-\frac{56}{(5+4+4)^2}=-\frac{56}{169}^{\circ} C/m[/tex]
[tex]\frac{\partial T'(x,y)}{\partial y}=-\frac{28y}{(5+x^2+y^2)^2}[/tex]
[tex]\frac{\partial T'(2,2)}{\partial y}=-\frac{56}{(5+4+4)^2}=-\frac{56}{169}^{\circ} C/m[/tex]