Answer: The cell potential of the given cell is -0.567 V
Explanation:
The given chemical cell follows:
[tex]N(s)|N^{2+}(aq.)||M^{+}(aq.)|M(s)[/tex]
Oxidation half reaction: [tex]N(s)\rightarrow N^{2+}(aq.)+2e^-;E^o_{N^{2+}/N}=1.129V[/tex]
Reduction half reaction: [tex]M^{+}(aq.)+2^-\rightarrow M(s);E^o_{M^+/M}=0.576V[/tex] ( × 2)
Net cell reaction: [tex]N(s)+2M^{+}(aq.)\rightarrow N^{2+}(aq.)+2M(s)[/tex]
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=0.576-(1.129)=-0.553V[/tex]
To calculate the EMF of the cell, we use the Nernst equation, which is:
[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[N^{2+}]}{[M^{+}]^2}[/tex]
where,
[tex]E_{cell}[/tex] = electrode potential of the cell = ? V
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = -0.553 V
n = number of electrons exchanged = 2
[tex][M^{+}]=0.973M[/tex]
[tex][N^{2+}]=0.307M[/tex]
Putting values in above equation, we get:
[tex]E_{cell}=-0.553-\frac{0.059}{2}\times \log(\frac{0.307}{(0.973)^2})\\\\E_{cell}=-0.567V[/tex]
Hence, the cell potential of the given cell is -0.567 V