The annual inventory cost C for a manufacturer is given below, where Q is the order size when the inventory is replenished. Find the change in annual cost when Q is increased from 347 to 348, and compare this with the instantaneous rate of change when Q = 347. (Round your answers to two decimal places.) C = 1,017,000/ Q + 6.8QChange in C= ___________C(360)= ___________

Respuesta :

Answer:

Change in annual cost is 1.63 (decreasing).

Instantaneous rate of change is 1.65 (decreasing).

Step-by-step explanation:

Given that,

[tex]C=\dfrac{1017000}{Q}+6.8\:Q[/tex]

The annual change in cost is given by,  

[tex]Change\:in\:C=C\left(348\right)-C\left(347\right) [/tex]

Calculate the value of cost at Q = 347 and Q =348 by substituting the value in cost function.

Calculating value of C at Q=347,

[tex]C=\dfrac{1017000}{347}+6.8\left(347\right)[/tex]

[tex]C=5290.44 [/tex]

Calculating value of C at Q=348,

[tex]C=\dfrac{1017000}{348}+6.8\left(348\right)}[/tex]

[tex]C= 5288.81[/tex]

Substituting the value,  

[tex]Change\:in\:C=5288.81-5290.44 [/tex]

[tex]Change\:in\:C=-1.63 [/tex]

Negative sign indicate that there is decrease in annual cost when Q is increased from 347 to 348

Therefore, change is annual cost is 1.63  (decreasing).

Instantaneous rate of change is given by the formula,  

[tex] f’\left(x\right)=\lim_{h\rightarrow 0}\dfrac{f\left(x+h\right)-f\left(x\right)}{h}[/tex]

Rewriting,

[tex] C’\left(Q\right)=\lim_{h\rightarrow 0}\dfrac{C\left(Q+h\right)-C\left(Q\right)}{h}[/tex]

Now calculate \dfrac{C\left(Q+h\right) by substituting the value Q+h in cost function,

[tex]C\left(Q+h\right)= \dfrac{1017000}{Q+h}+6.8\left(Q+h\right)[/tex]

Therefore,  

[tex]C’\left(Q\right)= \lim _{h\to 0}\:\dfrac{\dfrac{1017000}{Q+h}+6.8\left(Q+h\right)-\left(\dfrac{1017000}{Q}+6.8Q\right)}{h}[/tex]

By using distributive law,

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000}{Q+h}+6.8Q+6.8h-\dfrac{1017000}{Q}-6.8Q}{h}[/tex]

Cancelling out common factors,  

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000}{Q+h}-\dfrac{1017000}{Q}+6.8h}{h}[/tex]

Now, LCD of [tex]\left(Q+h\right)[/tex] and [tex]Q[/tex] is [tex]Q(Q+h)[/tex]. So multiplying first term by [tex]Q[/tex]  and second term by

Therefore,  

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000}{Q+h}\times\dfrac{Q}{Q}-\dfrac{1017000}{Q}\times\dfrac{Q+h}{Q+h}+6.8h}{h}[/tex]

Simplifying,  

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000Q}{\left(Q+h\right)\left(Q\right)}-\dfrac{1017000\left(Q+h\right)}{Q\left(Q+h\right)}+6.8h}{h}[/tex]

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000Q-1017000\left(Q+h\right)}{\left(Q+h\right)\left(Q\right)}+6.8h}{h}[/tex]

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{1017000Q-1017000Q-1017000h}{\left(Q+h\right)\left(Q\right)}+6.8h}{h}[/tex]

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{\dfrac{-1017000h}{\left(Q+h\right)\left(Q\right)}+6.8h}{h}[/tex]

Factoring out h from numerator,  

[tex]C’\left(Q\right) = \lim _{h\to 0}\:\dfrac{h\left(\dfrac{-1017000}{\left(Q+h\right)\left(Q\right)}+6.8\right)}{h}[/tex]

Cancelling out h,  

[tex]C'\left(Q\right) = \lim_{h\to 0}\: -\dfrac{1017000}{\left(Q+h\right)Q}+6.8[/tex]

Calculating the limit by plugging value h = 0,

[tex]C'\left(Q\right) = -\dfrac{1017000}{\left(Q+0\right)Q}+6.8[/tex]

[tex]C'\left(Q\right) = -\dfrac{1017000}{Q^{2}}+6.8[/tex]

Given that Q=347,

[tex]C'\left(347\right) = -\dfrac{1017000}{347^{2}}+6.8[/tex]

[tex]C'\left(347\right) = -1.65[/tex]

Negative sign indicate that there is decrease in instantaneous rate when Q is 347

Therefore, instantaneous rate of change at Q=347 is 1.65  (decreasing).

ACCESS MORE