Respuesta :

Answer:

[tex] \boxed{\mathsf{A} \triangle = \red{\dfrac{67}{2}u.a}} [/tex]

Step-by-step explanation:

Let's follow up with the solution. Considering a triangle with the vertices [tex]\mathsf{A(x_A, y_A)}[/tex], [tex] \mathsf{B(x_B, y_B)}[/tex] and [tex] \mathsf{C(x_C, y_C)}[/tex], have a look at the representation in the cartesian plan.

From this representation we can say that the area (A) of a triangle through the knowledge of analytical geometry is given by the determinant of the vertices divided by two, mathematically,

[tex] \mathsf{A} \triangle = \dfrac{\left| \begin{array}{ccc} \mathsf{x_A} & \mathsf{y_A }& 1 \\ \mathsf{x_B} & \mathsf{ y_B} & 1 \\ \mathsf{ x_C} & \mathsf{ y_C} & 1 \end{array} \right|}{2}[/tex]

So, applying this knowledge we're going to have,

[tex] \mathsf{A} \triangle = \dfrac{\left| \begin{array}{ccc} 3 & -7 & 1 \\ 6 & 4 & 1 \\ -2 & -3 & 1 \end{array} \right|}{2} [/tex]

[tex] \mathsf{A} \triangle = \dfrac{1}{2}\left[ \left.\begin{array}{ccc} 3 & -7 & 1 \\ 6 & 4 & 1 \\ -2& -3 & 1 \end{array} \right| \begin{array}{cc} 3 & -7 \\ 6 & 4 \\ -2 & -3 \end{array} \right] [/tex]

[tex] \mathsf{A} \triangle = \dfrac{12 + 14 - 18 - (-8 - 9 - 42)}{2} [/tex]

[tex] \red{\mathsf{A} \triangle = \dfrac{67}{2} = 33,5u.a} [/tex]

Hope you enjoy it, see ya!)

[tex] \green{\mathsf{FROM}}:[/tex] Mozambique, Maputo – Matola City – T-3

DavidJunior17

ACCESS MORE