Respuesta :
Complete question:
A long, straight wire lies along the z-axis and carries a 4.00-A current in the +z-direction. Find the magnetic field (magnitude and direction) produced at the following points by a 0.500-mm segment of the wire centered at the origin:
(a) x = 2.00 m, y = 0, z = 0;
(b) x = 0, y = 2.00 m, z = 0;
(c) x = 2.00 m, y = 2.00 m, z = 0; (d) x = 0, y = 0, z = 2.00 m.
Answer:
a) [tex] 5.25*10^-1^1 T [/tex];
b) [tex] 5.25*10^-^1^1 T [/tex];
c) [tex] 1.86*10^-^1^1 T [/tex];
d) 0
Explanation:
Given
I = 4.20A
P = 0.500mm
a) r= (2.00m) i
∆[tex]T*r = (0.500*10^-^3)(2.00)= 1.00*10^-^3m^2 [/tex];
[tex] B = [(1.00*10^-^7 T.m/A)(4.20A)(1*10^-^3m^2)] / (2.00)^3 [/tex];
[tex] (B= 5.25*10^-^1^1T) j [/tex]
b) r = (2.00m) j
∆[tex]T*r = (0.500*10^-^3)(2.00)= 1.00*10^-^3m^2 [/tex];
[tex] B = [(1.00*10^-^7 T.m/A)(4.20A)(1*10^-^3m^2)] / (2.00)^3 [/tex];
[tex] (B= 5.25*10^-^1^1T) i [/tex]
c) r = (2.00m) (i+j)
[tex] (i/j) r = \sqrt{2} (2.00m) [/tex];
∆[tex]T*r = (0.500*10^-^3)(2.00)= 1.00*10^-^3m^2 [/tex];
[tex] B = [(1.00*10^-^7 T.m/A)(4.20A)(1*10^-^3m^2)] / (\sqrt{2})(2.00)^3 [/tex];
[tex] (B= 1.86*10^-^1^1T)(i-j) [/tex]
d) r = (2.00m) k
∆[tex]T*r = (0.500*10^-^3)(2.00) k*k = 0 [/tex];
B = 0
The Biot-Savart law and the solution of the determinate allow to find the results for the magnetic field produced at various points by a current segment in the z direction are:
a) B = 5.25 10-11 j^ T
b) B = 5.25 10-11 i^ T
c) B = 1.856 10-11 (-i^ + j^ ) T
d) B = 0 T
Given parameters
- The value of the current in the + z direction is: I = 4.20 A
- The length of the current segment is l = 0.500mm = 5 10-4 m in the origin position.
To find
- Magnetic field
a) r = 2.00 i^ m
b) r = 2.00 j^ m
c) r = (2.00 i^ + 2.00 j^ ) m
d) r = 2 k^ m
The Biot-Savart law gives the value of the magnetic field produced at a point by a segment of current at a given position.
B = [tex]\frac{\mu_o }{4\pi } \ I \ \frac{dl x r^ }{r^2}[/tex]
where μ₀ is the permeability of the vacuum. I the current, dl a vector in the direction of the current, r el unitary vector and r² the distance.
The best method to find the magnetic field is to solve for the determinant.
[tex]B = \frac{\mu_o}{4\pi } \ I \ \left[\begin{array}{ccc}i&j&k\\dl_x&dl_y&dl_z\\r_x&r_y&r_z\end{array}\right][/tex]
Let's use this expression for each case:
a) Let's find the distance using Pythagoras' theorem.
r = [tex]\sqrt{(x-x_o)^2 +(y-y_o)^2 + (z-z_o)^2}[/tex]
It indicates that the current segment is at the origin of the system, therefore its coordinates are zero.
r = 2.00 m
Let's calculate.
[tex]B= \frac{4 \pi \ 10^{-7} }{4\pi } \ \frac{4.20}{2^2} \ \left[\begin{array}{ccc}i&j&k\\0&0&5\\1&0&0\end{array}\right] \ 10^{-4}[/tex]
B = 5.25 10⁻¹¹ j
b) The distance is a scalar therefore it has the same value, We look for the magnetic field.
[tex]B= 10^{-7} \ \frac{4.2}{4} \ \left[\begin{array}{ccc}i&j&k\\0&0&5\\0&1&0\end{array}\right] 10^{-4}[/tex]
B = 5.25 10-11 i
c) Let's look for the distance.
r = [tex]\sqrt{2^2 +2^2}[/tex]
r = 2 √2 m
The unit vector is:
r ^ =[tex]\frac{1}{\sqrt{2} } \ ( i + j)[/tex] )
Let's calculate the magnetic field.
[tex]B= 10^{-7 } \ \frac{4.2}{8} \ \frac{1}{\sqrt{2} } \ \left[\begin{array}{ccc}i&j&k\\0&0&5\\1&1&0\end{array}\right] 10^{-5}[/tex]
B = 1.856 10⁻¹¹ (-i + j)
d) Let's calculatethe magnetic field.
[tex]B= 10^{-7} \frac{4.2}{4} \ \left[\begin{array}{ccc}i&j&0\\0&0&5\\0&0&1\end{array}\right] 10^{-4}[/tex]
B = 0
In conclusion using the Biot-Savart law and the determinate solution we can find the results for the magnetic field produced at various points by a current segment in the z direction are:
a) B = 5.25 10⁻¹¹ j^ Y
b) B = 5.25 10⁻¹¹ i^ T
c) B = 1.856 10⁻¹¹ (-i^ + j^ ) T
d) B = 0 T
Learn more here: brainly.com/question/1121860