Each cross section is a square with side length equal to the vertical distance between the curves [tex]y=5[/tex] and [tex]y=\sin^{-1}x[/tex], with [tex]0\le x\le1[/tex], or [tex]5-\sin^{-1}x[/tex]. Then each section has an area of [tex](5-\sin^{-1}x)^2[/tex], so the volume of this solid is
[tex]\displaystyle\int_0^1(5-\sin^{-1}x)^2\,\mathrm dx=\boxed{33-5\pi+\frac{\pi^2}4}[/tex]
For computing the integral, consider the substitution
[tex]u=5-\sin^{-1}x\implies x=\sin(5-u)\implies\mathrm dx=-\cos(5-u)\,\mathrm du[/tex]
Then the integral becomes
[tex]\displaystyle\int_5^{5-\pi/2}u^2(-\cos(5-u))\,\mathrm du[/tex]
[tex]=\displaystyle\int_{5-\pi/2}^5u^2\cos(u-5)\,\mathrm du[/tex]
Integrate by parts twice; for the first round, take
[tex]f=u^2\implies\mathrm df=2u\,\mathrm du[/tex]
[tex]\mathrm dg=\cos(u-5)\,\mathrm du\implies g=\sin(u-5)[/tex]
[tex]\implies\displaystyle u^2\sin(u-5)\bigg|_{5-\pi/2}^5-2\int_{5-\pi/2}^5u\sin(u-5)\,\mathrm du[/tex]
For the second round, take
[tex]f=u\implies\mathrm df=\mathrm du[/tex]
[tex]\mathrm dg=-\sin(u-5)\,\mathrm du\implies g=\cos(u-5)[/tex]
[tex]\implies\displaystyle\bigg(u^2\sin(u-5)+u\cos(u-5)\bigg)\bigg|_{5-\pi/2}^5-\int_{5-\pi/2}^5\cos(u-5)\,\mathrm du[/tex]
and the rest is trivial.