Respuesta :
Answer:
25.13 square inch
Step-by-step explanation:
The automobile windshield wiper 7 inches long rotates through an angle of 60 degrees.
Note that the rubber part covers only the last 6 inches of the wiper.
To find the area of the windshield cleaned by the wiper,
We find the area of the annulus shaded in grey in the diagram.
Area of a Sector=[tex]\frac{\theta}{360}X\pi r^2[/tex]
For the larger sector, Radius, R=7cm
For the smaller Sector, radius r=1cm
Area cleaned by the wiper
[tex]=\frac{\theta}{360}X\pi R^2-\frac{\theta}{360}X\pi r^2\\=\frac{\theta}{360}X\pi(R^2-r^2)\\=\frac{60}{360}X\pi(49-1)\\=\frac{48 X \pi}{6}\\=25.13[/tex]
The area cleaned by the wiper is 25.13 square inch.

Thus the required area is [tex]0.096[/tex] square inches.
Area of the windshield:
Acute area of the windshield glazing means the rectangular area of the windshield, eight and one-half inches by 11 inches, directly in front of the driver's line of vision as depicted.
Let the area of the windshield ABC be [tex]A[/tex] then,
[tex]A=\frac{1}{2}r^2\theta[/tex]
Now, substituting the given values we get,
[tex]A=\frac{1}{2}r^2\theta\\A=\frac{1}{2}\times(7)^2 \times \frac{\pi}{180} \\A=0.4276[/tex]
Let the area of the windshield ADE be [tex]A'[/tex] then,
[tex]A'=\frac{1}{2}r^2\theta[/tex]
Now, substituting the given values we get,
[tex]A'=\frac{1}{2}r^2\theta\\A'=\frac{1}{2}\times(1)^2 \times 60\times \frac{\pi}{180} \\A'=0.5236[/tex]
For finding the area of the windshield takes the difference of [tex]A\ and\ A'[/tex] then,
[tex]0.5236-0.4276=0.096[/tex]
Learn more about the topic Area of the windshield:
https://brainly.com/question/10725966