Respuesta :

statement is true!

Step-by-step explanation:

Here we have , The circle[tex](x-2)^2+(y-3)^2=16[/tex]  intersect y-axis. We need to find that this statement is true or false . We have the following equation of circle :

[tex](x-2)^2+(y-3)^2=16[/tex]

Now, In order to say that circle intersect y-axis , we have x=0 , Let's find out value of y for this:

[tex](x-2)^2+(y-3)^2=16[/tex]

⇒ [tex](0-2)^2+(y-3)^2=16[/tex]

⇒ [tex]4+(y-3)^2=16[/tex]

⇒ [tex](y-3)^2=12[/tex]

⇒ [tex]\sqrt{(y-3)^2}=\sqrt{12}[/tex]

⇒ [tex]y-3 = \pm 2\sqrt{3}[/tex]

⇒ [tex]y=3 \pm 2\sqrt{3}[/tex]

Therefore circle[tex](x-2)^2+(y-3)^2=16[/tex]  intersect y-axis at two points [tex](0 , 3+2\sqrt{3})[/tex] and [tex](0 , 3-2\sqrt{3})[/tex]. And so statement is true!

ACCESS MORE