Answer:
Intrinsic value of the share: 59.35
Explanation:
First we calcualte D4 and D5 and D6
5.5 x 1.286 = D4
then D4 x 1.286 = D5
last D5 x 1.0438 = D6
Then, we solve for the horizon value which is:
D6/(r-g)
being constant grow 0.0438
and r the required return of 14.60%
This give us 92.8989966379648
Last, we discount each concept by the years ahead of time (notice Horizon while it used D6 it is at year 5 because we use a dividend one year ahead of time.
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $5.50
time 3.00
rate 0.14600
[tex]\frac{5.5}{(1 + 0.146)^{3} } = PV[/tex]
PV 3.6543
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $7.07
time 4.00
rate 0.14600
[tex]\frac{7.073}{(1 + 0.146)^{4} } = PV[/tex]
PV 4.1008
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $9.10
time 5.00
rate 0.14600
[tex]\frac{9.095879}{(1 + 0.146)^{5} } = PV[/tex]
PV 4.6017
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $92.90
time 5.00
rate 0.14600
[tex]\frac{92.89899663}{(1 + 0.146)^{5} } = PV[/tex]
PV 46.9989
We add them all aand get the valeu of the share
[tex]\left[\begin{array}{ccc}#&Cashflow&Discounted\\&&\\1&&0\\2&&0\\3&5.5&3.65\\4&7.073&4.1\\5&9.095878&4.6\\5&92.8989966379648&47\\&TOTAL&59.35\\\end{array}\right][/tex]