Respuesta :
Explanation:
According to Newton's second law of motion,
[tex]m_{1}g - T = m_{1}a[/tex] ......... (1)
and, [tex]T - m_{2}g = m_{2}a[/tex] ......... (2)
When we add both equations, (1) and (2) then the expression obtained for "a" is as follows.
a = [tex]\frac{m_{1} - m_{2}}{m_{1} + m_{2}} \times g[/tex]
= [tex]\frac{17.7 - 11.1}{17.7 + 11.1} \times 9.8[/tex]
= [tex]\frac{6.6}{28.8} \times 9.8[/tex]
= 2.24 [tex]m/s^{2}[/tex]
Now, putting the value of "a" in equation (1) then we will calculate the tension as follows.
[tex]m_{1}g - T = m_{1}a[/tex]
[tex]17.7 \times 9.8 - T = 17.7 \times 2.24[/tex]
173.46 - T = 39.648
T = 133.812 N
Thus, we can conclude that the magnitude of their acceleration is 2.24 [tex]m/s^{2}[/tex] and the tension T is 133.812 N in the rope.
Answer:
Explanation:
m1 = 17.7 kg
m2 = 11.1 kg
Let a be the acceleration and T be the tension in the string.
use Newton's second law
m1 g - T = m1 x a ....(1)
T - m2 g = m2 x a ..... (2)
Adding both the equations
(m1 - m2) g = ( m1 + m2 ) x a
(17.7 - 11.1 ) x 9.8 = (17.7 + 11.1) x a
64.68 = 28.8 a
a = 2.25 m/s²
Put the value of a in equation (1)
17.7 x 9.8 - T = 17.7 x 2.25
173.46 - T = 39.825
T = 133.64 N