Answer:
[tex]E_a=1124.83 J/mol[/tex]
Explanation:
Given that second order equation
K₁ = 0.0796 L/mol-s , T₁= 737⁰C
T₁ = 737 + 273 K = 1010 K
K₂ = 0.0815 L/mol-s , T₂=947°C
T₂=947+273 K= 1220 K
The activation energy given as follows
[tex]\ln\dfrac{K_2}{K_1}=\dfrac{E_a}{R}\left ( \dfrac{1}{T_1}-\dfrac{1}{T_2} \right )[/tex]
Now by putting the values we can get
[tex]\ln\dfrac{0.0815}{0.0796}=\dfrac{E_a}{8.314}\left ( \dfrac{1}{1010}-\dfrac{1}{1220} \right )[/tex]
[tex]0.023=0.00017\times \dfrac{E_a}{8.314}[/tex]
[tex]E_a=0.023\times \dfrac{8.314}{0.00017}[/tex]
[tex]E_a=1124.83 J/mol[/tex]
Therefore the activation energy will be 1124.83 J/mol