Answer:
The velocity at the nozzle at inlet [tex]V_{1}[/tex] = 3584 [tex]\frac{m}{sec}[/tex]
Explanation:
Pressure at inlet [tex]P_{1}[/tex] = 1 × [tex]10^{6}[/tex] Pa
Temperature at inlet [tex]T_{1}[/tex] = 518 ° c = 791 K
Mass flow rate = [tex]\frac{5322}{60}[/tex] [tex]\frac{kg}{sec}[/tex] = 88.7
Gas constant for carbon die oxide is R = 189 [tex]\frac{J}{kg k}[/tex]
Mass flow rate inside the nozzle is given by the formula = [tex]\frac{P_{1} }{R T_{1} }[/tex] × [tex]A_{1}[/tex] × [tex]V_{1}[/tex]
⇒ [tex]P_{1}[/tex] = = 1 × [tex]10^{6}[/tex] Pa
⇒ R[tex]T_{1}[/tex] = 791 × 189 = 149499 [tex]\frac{J}{kg}[/tex]
⇒ [tex]A_{1}[/tex] = 0.0037 [tex]m^{2}[/tex]
Put all the above values in above formula we get,
⇒ 88.7 = [tex]\frac{10^{6} }{149499}[/tex] × 0.0037 × [tex]V_{1}[/tex]
⇒ [tex]V_{1}[/tex] = 3584 [tex]\frac{m}{sec}[/tex]
This is the velocity at the nozzle at inlet.