Respuesta :
Answer:
4a² + 4ab + b² units²
Step-by-step explanation:
Area of a square = Length²
ER is a length of the square
ER = (2a + b)
Area of a square = (2a + b)² = (2a + b)(2a + b) = (2a)(2a) + (2a)(b) + (2a)(b) + (b)(b) = 4a² + 4ab + b²
The area of the square OSER = [tex]4a^{2}+4ab+b^{2}[/tex] sq unit
Step-by-step explanation:
Given,
Length of each side(ER) = (2a+b) unit
To find the area of the square OSER.
Formula
The area of a square with each side a unit is [tex]a^{2}[/tex] sq unit
[tex](a+b)^{2}= a^{2} +b^{2} +2ab[/tex]
Now,
The area of the square OSER = [tex](2a+b)^{2}[/tex] sq unit
= [tex]4a^{2}+4ab+b^{2}[/tex] sq unit [ by using the formula of ([tex]a+b)^{2}[/tex]]