Kinetic energy lost in collision is 1097.95 J
Explanation:
Given,
Mass, [tex]m_{1}[/tex]= 60 g = 0.006 kg
Speed, [tex]v_{1}[/tex] = 605 m/s
[tex]m_{2}[/tex] = 54 kg
[tex]v_{2}[/tex]= 0
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
So,
[tex]m1v1 + m2v2 = (m1 + m2)v\\\\0.006 X 605 + 54 X 0 = (0.006 + 54) v\\\\v = \frac{3.63}{54.006}\\ \\v = 0.067m/s[/tex]
Before collision, the kinetic energy is
[tex]\frac{1}{2}* m1 * (v1)^2 + \frac{1}{2} * m2 * (v2)^2[/tex]
[tex]=\frac{1}{2} X 0.006 X (605)^2 + 0\\\\= 1098.075J[/tex]
Therefore, kinetic energy before collision is 1098 J
Kinetic energy after collision:
[tex]\frac{1}{2}* (m1+m2) * (v)^2 + KE(lost)[/tex]
By plugging in the values, we get
[tex]\frac{1}{2} * (0.006 + 54) * (0.067)^2 + KE(lost)[/tex]
[tex]0.1212J + KE(lost)[/tex]
Since,
initial Kinetic energy = Final kinetic energy
1098.075 J = 0.1212 J + K×E(lost)
K×E(lost) = 1098.075 J - 0.121 J
K×E(lost) = 1097.95 J
Therefore, kinetic energy lost in collision is 1097.95 J