The second matrix [tex]\left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right][/tex] represents the triangle dilated by a scale factor of 3.
Step-by-step explanation:
Step 1:
To calculate the scale factor for any dilation, we divide the coordinates after dilation by the same coordinated before dilation.
The coordinates of a vertice are represented in the column of the matrix. Since there are three vertices, there are 2 rows with 3 columns. The order of the matrices is 2 × 3.
Step 2:
If we form a matrix with the vertices (-2,0), (1,5), and (4,-8), we get
[tex]\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right][/tex]
The scale factor is 3, so if we multiply the above matrix with 3 throughout, we will get the matrix that represents the vertices of the triangle after dilation.
Step 3:
The matrix that represents the triangle after dilation is given by
[tex]3\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right] = \left[\begin{array}{ccc}3(-2)&3(1)&3(4)\\3(0)&3(5)&3(-8)\end{array}\right] = \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right][/tex]
This is the second option.