Answer:
[tex]TA=(144+36\sqrt{3})\ units^2[/tex]
Step-by-step explanation:
we know that
The total area or surface area of the regular pyramid is equal to the area of the triangular base plus the area of its three lateral triangular faces
so
step 1
Find the area of the triangular base B
Is an equilateral triangle
Applying the law of sines
[tex]B=\frac{1}{2}(12^2)sin(60^o)[/tex]
[tex]B=\frac{1}{2}(144)\frac{\sqrt{3}}{2}[/tex]
[tex]B=36\sqrt{3}\ units^2[/tex]
step 2
Find the area of the lateral triangular faces
[tex]A=3[\frac{1}{2}(12)h][/tex]
Find the height
Applying the Pythagorean Theorem
[tex]10^2=6^2+h^2[/tex]
[tex]h^2=100-36\\h^2=64\\h=8\ units[/tex]
Find the area of the lateral triangular faces
[tex]A=3[\frac{1}{2}(12)8]=144\ units^2[/tex]
therefore
The total area is
[tex]TA=(144+36\sqrt{3})\ units^2[/tex]