If we instead connect this headlight and starter in series with the 12.0 V battery, how much total power in W would the headlight and starter consume? (You may neglect any other resistance in the circuit and any change in resistance in the two devices.)

Respuesta :

Answer:

If [tex]\large{P_{H}}[/tex] and [tex]\large{P_{S}}[/tex] be the power consumed by the headlight and starter respectively, then the total power consumed will be [tex]\large{P = \dfrac{P_{H}P_{S}}{P_{H} + P_{S}}}[/tex]

Explanation:

We know that electric power ([tex]P[/tex]) is given by

[tex]\large{P = \dfrac{V^{2}}{R}}[/tex]

where '[tex]V[/tex]' is the applied voltage and '[tex]R[/tex]' is the resistance.

If we consider that '[tex]\large{P_{H}}[/tex]' and '[tex]\large{P_{S}}[/tex]' be the power consumed by the headlight and starter respectively, then the resistance ([tex]\large{R_{H}}[/tex]) of the headlight and the resistance ([tex]\large{R_{S}}[/tex]) of the starter can be written as

[tex]&&\large{R_{H} = \dfrac{V^{2}}{P_{H}} = \dfrac{12^{2}}{P_{H}}}\\&and,& \large{R_{S} = \dfrac{V^{2}}{P_{S}} = \dfrac{12^{2}}{P_{S}}}[/tex]

If the headlight and the starter in connected in series, then equivalent resistance ([tex]\large{R_{eq}}[/tex]) will be

[tex]\large{R_{eq} = R_{H} + R_{S} = 12^{2}(\dfrac{1}{P_{H} + P_{S}})}[/tex]

So the total power ([tex]P[/tex]) consumed will be given by

[tex]\large{P = \dfrac{12^{2}}{R_{eq}} = \dfrac{1}{(\dfrac{1}{P_{H}} + \dfrac{1}{P_{S}})} = \dfrac{P_{H}P_{S}}{P_{H} + P_{S}}}[/tex]