Answer: The frequency of the light is [tex]3.088\times 10^{15}s^{-1}[/tex]
Explanation:
The equation used to calculate the energy for a transition, we use the equation:
[tex]E_n=-2.18\times 10^{-18}J(\frac{1}{n^2})[/tex]
where,
n = principal energy level
Calculating the energy difference:
[tex]\Delta E=E_4-E_1[/tex]
[tex]\Delta E=-2.18\times 10^{-18}\left (\frac{1}{4^2}-\frac{1}{1^1}\right)\\\\\Delta E=2.044\times 10^{-18}J[/tex]
To calculate the energy of the light for a given frequency, we use the equation given by Planck, which is:
[tex]E=h\nu[/tex]
where,
E = energy of the light = [tex]2.044\times 10^{-18}J[/tex]
h = Planck's constant = [tex]6.62\times 10^{-34}Js[/tex]
[tex]\nu[/tex] = frequency of the light = ?
Putting values in above equation, we get:
[tex]2.044\times 10^{-18}J=6.62\times 10^{-34}Js\times \nu\\\\\nu=\frac{2.044\times 10^{-18}J}{6.62\times 10^{-34}Js}=3.088\times 10^{15}s^{-1}[/tex]
Hence, the frequency of the light is [tex]3.088\times 10^{15}s^{-1}[/tex]