Answer:
[tex]1-\frac{\sqrt{3} }{4}-\frac{\pi}{6}[/tex]
Step-by-step explanation:
The missing figure is shown in the attachment
The area of the shaded region = Area of Square - (Area of sector AOB + Area of equilateral triangle BOC + Area of sector COD)
Area of Sector AOB=Area of Sector COD=[tex]\frac{30}{360}*\pi*1^2=\frac{\pi}{12}[/tex]
Area of equilateral triangle =[tex]\frac{1}{2}*r*\frac{\sqrt{3} }{2}*r= \frac{1}{2}*1*\frac{\sqrt{3} }{2}*=\frac{\sqrt{3} }{4}[/tex]
Area of shade region =[tex]1^2-\frac{\sqrt{3} }{4}-\frac{\pi}{12}*2[/tex]
[tex]1-\frac{\sqrt{3} }{4}-\frac{\pi}{6}[/tex]