Respuesta :

Option B: [tex]$4.5 \times 10^{-6}>3.9 \times 10^{-9}$[/tex] is the correct answer.

Explanation:

Option A: [tex]$7.1 \times 10^{8}>1.2 \times 10^{9}$[/tex]

Simplifying, we get,

[tex]710000000>1200000000[/tex]

Since, the value of [tex]$1.2 \times 10^{9}$[/tex] is greater than [tex]$7.1 \times 10^{8}$[/tex], the comparison [tex]$7.1 \times 10^{8}>1.2 \times 10^{9}$[/tex] is false.

Hence, Option A is not the correct answer.

Option B: [tex]$4.5 \times 10^{-6}>3.9 \times 10^{-9}$[/tex]

Simplifying, we get,

[tex]0.0000045>0.0000000039[/tex]

Since, the value of [tex]$4.5 \times 10^{-6}$[/tex] is greater than [tex]$3.9 \times 10^{-9}$[/tex], the comparison [tex]$4.5 \times 10^{-6}>3.9 \times 10^{-9}$[/tex] is true.

Hence, Option B is the correct answer.

Option C: [tex]$2.4 \times 10^{-5}<5.7 \times 10^{-6}$[/tex]

Simplifying, we get,

[tex]0.000024<0.0000057[/tex]

Since, the value of [tex]$2.4 \times 10^{-5}$[/tex] is greater than [tex]$5.7 \times 10^{-6}$[/tex], the comparison [tex]$2.4 \times 10^{-5}<5.7 \times 10^{-6}$[/tex] is false.

Hence, Option C is not the correct answer.

Option D: [tex]$8.2 \times 10^{-4}<3.6 \times 10^{-6}$[/tex]

Simplifying, we get,

[tex]0.00082<0.000036[/tex]

Since, the value of [tex]$8.2 \times 10^{-4}$[/tex] is greater than [tex]$3.6 \times 10^{-6}$[/tex], the comparison [tex]$8.2 \times 10^{-4}<3.6 \times 10^{-6}$[/tex] is false.

Hence, Option D is not the correct answer.

Answer:

THE ANSWER IS (B.)

Step-by-step explanation:

I HADE THE SAME ONE AND GOT IT RIGHT TRUST ME ;)

ACCESS MORE