Answer:
The total charge on the rod is 47.8 nC.
Explanation:
Given that,
Charge = 5.0 nC
Length of glass rod= 10 cm
Force = 840 μN
Distance = 4.0 cm
The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector
We need to calculate the electric field
Using formula of electric field intensity
[tex]E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}[/tex]
Where, Q = charge on the rod
The force is on the charged bead of charge q placed in the electric field of field strength E
Using formula of force
[tex]F=qE[/tex]
Put the value into the formula
[tex]F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}[/tex]
We need to calculate the total charge on the rod
[tex]Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}[/tex]
Put the value into the formula
[tex]Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}[/tex]
[tex]Q=47.8\times10^{-9}\ C[/tex]
[tex]Q=47.8\ nC[/tex]
Hence, The total charge on the rod is 47.8 nC.