A sample of ammonia ^NH3h gas is completely decomposed to nitrogen and hydrogen gases over heated iron wool. If the total pressure is 866 mmHg, calculate the partial pressures of N2 and H2.

Respuesta :

Answer : The partial pressure of [tex]N_2[/tex] and [tex]H_2[/tex] is, 216.5 mmHg and 649.5 mmHg

Explanation :

According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.

Formula used :

[tex]p_i=X_i\times p_T[/tex]

[tex]X_i=\frac{n_i}{n_T}[/tex]

So,

[tex]p_i=\frac{n_i}{n_T}\times p_T[/tex]

where,

[tex]p_i[/tex] = partial pressure of gas

[tex]X_i[/tex] = mole fraction of gas

[tex]p_T[/tex] = total pressure of gas

[tex]n_i[/tex] = moles of gas

[tex]n_T[/tex] = total moles of gas

The balanced decomposition of ammonia reaction will be:

[tex]2NH_3\rightarrow N_2+3H_2[/tex]

Now we have to determine the partial pressure of [tex]N_2[/tex] and [tex]H_2[/tex]

[tex]p_{N_2}=\frac{n_{N_2}}{n_T}\times p_T[/tex]

Given:

[tex]n_{N_2}=1\\\\n_{H_2}=3\\\\n_{T}=4\\\\p_T=866mmHg[/tex]

[tex]p_{N_2}=\frac{1}{4}\times (866mmHg)=216.5mmHg[/tex]

and,

[tex]p_{H_2}=\frac{n_{H_2}}{n_T}\times p_T[/tex]

Given:

[tex]n_{H_2}=1\\\\n_{H_2}=3\\\\n_{T}=4\\\\p_T=866mmHg[/tex]

[tex]p_{H_2}=\frac{3}{4}\times (866mmHg)=649.5mmHg[/tex]

Thus, the partial pressure of [tex]N_2[/tex] and [tex]H_2[/tex] is, 216.5 mmHg and 649.5 mmHg