Answer:
Moment of inertia will be [tex]I=18000kgm^2[/tex]
So option (c) will be correct answer
Explanation:
We have given initial angular velocity [tex]\omega _i=0rad/sec[/tex]
Final angular velocity [tex]\omega _f=1.2rad/sec[/tex]
Time taken to reach final angular velocity t = 18 sec
According to first equation of motion
[tex]\omega _f=\omega _i+\alpha t[/tex]
[tex]1.2=0+\alpha \times 18[/tex]
[tex]\alpha =0.066rad/sec^2[/tex]
Torque is given in question as 1200 N -m
We know that torque is equal to [tex]\tau =I\alpha[/tex], here I is moment of inertia and [tex]\alpha[/tex] is angular acceleration
So [tex]1200=I\times 0.0666[/tex]
[tex]I=18000kgm^2[/tex]
So option (c) will be correct answer