Respuesta :
Answer: The concentration of [tex]C_2O_4^{2-}[/tex] at equilibrium is [tex]1.52\times 10^{-4}M[/tex]
Explanation:
We are given:
Molarity of oxalic acid solution = 0.019 M
Oxalic acid [tex](H_2C_2O_4)[/tex] is a weak acid and will dissociate 2 hydrogen ions.
- The chemical equation for the first dissociation of oxalic acid follows:
[tex]H_2C_2O_4(aq.)\rightleftharpoons H^+(aq.)+HC_2O_4^-(aq.)[/tex]
Initial: 0.019
At eqllm: 0.019-x x x
The expression of first equilibrium constant equation follows:
[tex]Ka_1=\frac{[H^+][HC_2O_4^{-}]}{[H_2C_2O_4]}[/tex]
We know that:
[tex]Ka_1\text{ for }H_2C_2O_4=0.056[/tex]
Putting values in above equation, we get:
[tex]0.056=\frac{x\times x}{(0.019-x)}\\\\x=-0.071,0.015[/tex]
Neglecting the negative value of 'x', because concentration cannot be negative.
- The chemical equation for the second dissociation of oxalic acid:
[tex]HC_2O_4^-(aq.)\rightarrow H^+(aq.)+C_2O_4^{2-}(aq.)[/tex]
Initial: 0.015
At eqllm: 0.015-y 0.015+y y
The expression of second equilibrium constant equation follows:
[tex]Ka_2=\frac{[H^+][C_2O_4^{2-}]}{[HC_2O_4^-]}[/tex]
We know that:
[tex]Ka_2\text{ for }H_2C_2O_4=1.55\times 10^{-4}[/tex]
Putting values in above equation, we get:
[tex]1.55\times 10^{-4}=\frac{(0.015+y)\times y}{(0.015-y)}\\\\y=-0.015,0.000152[/tex]
Neglecting the negative value of 'y', because concentration cannot be negative.
So, equilibrium concentration of oxalate ion = y = 0.000152 M
Hence, the concentration of [tex]C_2O_4^{2-}[/tex] at equilibrium is [tex]1.52\times 10^{-4}M[/tex]