One wallet costs $21 and one belt costs $68.
Step-by-step explanation:
Let,
x represent the cost of each wallet
y represent the cost of each belt
According to given statement;
93x+44y=4945 Eqn 1
62x+95y=7762 Eqn 2
Multiplying Eqn 1 by 62
[tex]62(93x+44y=4945)\\5766x+2728y=306590\ \ \ Eqn\ 3[/tex]
Multiplying Eqn 2 by 93
[tex]93(62x+95y=7762)\\5766x+8835y=721866\ \ \ Eqn\ 4[/tex]
Subtracting Eqn 3 from Eqn 4
[tex](5766x+8835y)-(5766x+2728y)=721866-306590\\5766x+8835y-5766x-2728y=415276\\6107y=4415276[/tex]
Dividing both sides by 6107
[tex]\frac{6107y}{6107}=\frac{415276}{6107}\\\\y=68[/tex]
Putting y=68 in Eqn 1
[tex]93x+44(68)=4945\\93x+2992=4945\\93x=4945-2992\\93x=1953[/tex]
Dividing both sides by 93
[tex]\frac{93x}{93}=\frac{1953}{93}\\x=21[/tex]
One wallet costs $21 and one belt costs $68.
Keywords: linear equation, elimination method
Learn more about elimination method at:
#LearnwithBrainly