Respuesta :

Answer:

Part 1) [tex]sin(\theta)=0.60[/tex]

Part 2) [tex]cos(\theta)=0.80[/tex]

Step-by-step explanation:

Let

A(9.31, 7.02)

see the attached figure to better understand the problem

step 1

Find the value of r (hypotenuse of the right triangle)

Applying the Pythagorean Theorem

[tex]r^2=x^2+y^2[/tex]

[tex]r^2=9.31^2+7.02^2\\r^2=135.9565\\r=11.66[/tex]

step 2

Find the value of sin(θ)

In the right triangle of the figure

[tex]sin(\theta)=\frac{y}{r}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

substitute

[tex]sin(\theta)=\frac{7.02}{11.66}=0.60[/tex]

Is positive because lie in the First Quadrant

step 3

Find the value of cos(θ)

In the right triangle of the figure

[tex]cos(\theta)=\frac{x}{r}[/tex] ----> by CAH (adjacent side divided by the hypotenuse)

substitute

[tex]cos(\theta)=\frac{9.31}{11.66}=0.80[/tex]

Is positive because lie in the First Quadrant

Ver imagen calculista