Respuesta :
Answer:
The following pairs/results are matched:
- [tex]5\left(2t+1\right)+\left(-7t+28\right)[/tex] = [tex]3t+33[/tex]
- [tex]3\left(3t-4\right)-\left(2t+10\right)[/tex] = [tex]7t-22[/tex]
- [tex]\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)[/tex] = [tex]\frac{16t}{3}-\frac{23}{5}[/tex]
- [tex]\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)[/tex] = [tex]-\frac{11}{4}t+36[/tex]
Step-by-step explanation:
Lets solve all the expressions to match the results.
- [tex]5\left(2t+1\right)+\left(-7t+28\right)[/tex]
Solving the expression
[tex]5\left(2t+1\right)+\left(-7t+28\right)[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a[/tex]
[tex]5\left(2t+1\right)-7t+28[/tex]
[tex]10t+5-7t+28[/tex]
[tex]3t+33[/tex]
Therefore, [tex]5\left(2t+1\right)+\left(-7t+28\right)[/tex] = [tex]3t+33[/tex]
- [tex]3\left(3t-4\right)-\left(2t+10\right)[/tex]
Solving the expression
[tex]3\left(3t-4\right)-\left(2t+10\right)[/tex]
[tex]9t-12-\left(2t+10\right)[/tex]
[tex]9t-12-2t-10[/tex]
[tex]7t-22[/tex]
Therefore, [tex]3\left(3t-4\right)-\left(2t+10\right)[/tex] = [tex]7t-22[/tex]
- [tex]\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)[/tex]
Solving the expression
[tex]\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]4t-\frac{8}{5}-\left(3-\frac{4}{3}t\right)[/tex]
[tex]4t-\frac{8}{5}-\left(-\frac{4t}{3}+3\right)[/tex]
[tex]4t-\frac{8}{5}-3+\frac{4t}{3}[/tex]
As
[tex]-3-\frac{8}{5}:\quad -\frac{23}{5}[/tex] and [tex]\frac{4t}{3}+4t:\quad \frac{16t}{3}[/tex]
So,
[tex]4t-\frac{8}{5}-3+\frac{4t}{3}[/tex] will become [tex]\frac{16t}{3}-\frac{23}{5}[/tex]
Therefore, [tex]\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)[/tex] = [tex]\frac{16t}{3}-\frac{23}{5}[/tex]
- [tex]\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)[/tex]
Solving the expression
[tex]\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)[/tex]
[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]-\frac{9}{2}t+3+\frac{7}{4}t+33[/tex]
[tex]\mathrm{Group\:like\:terms}[/tex]
[tex]\frac{9}{2}t+\frac{7}{4}t+3+33[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:-\frac{9}{2}t+\frac{7}{4}t=-\frac{11}{4}t[/tex]
[tex]-\frac{11}{4}t+3+33[/tex]
[tex]-\frac{11}{4}t+36[/tex]
Therefore, [tex]\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)[/tex] = [tex]-\frac{11}{4}t+36[/tex]
Thus, the following pairs/results are matched:
- [tex]5\left(2t+1\right)+\left(-7t+28\right)[/tex] = [tex]3t+33[/tex]
- [tex]3\left(3t-4\right)-\left(2t+10\right)[/tex] = [tex]7t-22[/tex]
- [tex]\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)[/tex] = [tex]\frac{16t}{3}-\frac{23}{5}[/tex]
- [tex]\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)[/tex] = [tex]-\frac{11}{4}t+36[/tex]
Keywords: algebraic expression
Learn more about algebraic expression from brainly.com/question/11336599
#learnwithBrainly
Answer:
Step-by-step explanation:
5 (2t + 1) + (-7t + 28) = 3t + 33
(4t - 8/5) - (3 - 4/3t) = 16/3t - 23/5
3 (3t - 4) - (2t + 10) = 7t - 22
(-9/2x + 3) + (7/4x + 33) = -11/4x + 36