Answer:
[tex]x=-5+2t[/tex]
[tex]y=7-3t[/tex]
for 0≤t≥3
Step-by-step explanation:
Parametric equations are defined as:
[tex]x=x_0+at[/tex]
[tex]y=y_0+bt[/tex]
where x₀,y₀,a and b are constants and a≠0 described by slope b/a
We must determine the slope as :
[tex]m=(y_2-y_1)/(x_2-x_1)=-3/2[/tex]
Therefore a=2 and b=-3
We can use a point. Lets use point 1 (-5,7)
Therefore
[tex]x_0=-5, y_0=7[/tex]
Plug into eqeuations:
[tex]x=-5+2t[/tex]
[tex]y=7-3t[/tex]
We can test points by making t=0,1,2 to get a parameter or range:
for t=0:
[tex]x=-3, y=7[tex]
Which is our first point
x=3:
[tex]x=1, y=-2[/tex]
Which is our second point therefore the parameter is 0≤t≥3
Therefore the parametric equations are:
[tex]x=-5+2t[/tex]
[tex]y=7-3t[/tex]
for 0≤t≥3