Answer:
[tex]x=1+t, y=1+t, z=3/2 +3/2t[/tex]
Where [tex] -1 \leq t \leq 0[/tex]
Step-by-step explanation:
We need a set of parametric equation like this:
[tex] x = x_1 +a t[/tex]
[tex] y = y_1 + bt[/tex]
[tex] z = z_1 +ct[/tex]
We have two points given where the line passes through
(0,0,0) and (1,1,3/2)
So we can find the director vector z as the difference between the two points:
[tex] z = <x-x_1 , y-y_1 , z-z_1>[/tex]
And replacing we got:
[tex]z=<1-0, 1-0,3/2 -0>=<1,1,3/2>[/tex]
So we have the direction coordinates given by:
[tex]<d,e,f>=<1,1,3/2>[/tex]
Now we can use the point <1,1,3/2> and the direction coordinates and we have:
[tex] x = 1 + t[/tex]
[tex] y = 1+ 1t[/tex]
[tex] z= 3/2 + 3/2 t[/tex]
and then we have this for the coordinates x,y,z
[tex](x,y,z) = <1+t, 1+t, 3/2 +3/2t>[/tex]
Since the line passes through (0,0,0)
[tex] 1+t =0 , t =-1[/tex]
[tex] 1+t = 0 , t=-1[/tex]
[tex] 3/2 + 3/2t = 0, t=-1[/tex]
So one solution is t=-1
And for the other point (1,1,3/2) we have this:
[tex] 1+t = 1, t=0[/tex]
[tex] 1+t = 1, t=0[/tex]
[tex] 3/2 + 3/2t = 3/2 , t=0[/tex]
So the other solution its t =0
So we can define the general solution as :
[tex]x=1+t, y=1+t, z=3/2 +3/2t[/tex]
Where [tex] -1 \leq t \leq 0[/tex]
The figure attached shows the vector when t=0 for example.