Respuesta :
Answer:
[H₂] = 1.61x10⁻³ M
Explanation:
2H₂S(g) ⇋ 2H₂(g) + S₂(g)
Kc = 9.30x10⁻⁸ = [tex]\frac{[H_{2}]^2[S_{2}]}{[H_{2}S]^2}[/tex]
First we calculate the initial concentration:
0.45 molH₂S / 3.0L = 0.15 M
The concentrations at equilibrium would be:
[H₂S] = 0.15 - 2x
[H₂] = 2x
[S₂] = x
We put the data in the Kc expression and solve for x:
[tex]\frac{(2x^2) * x}{(0.15-2x)^2}=9.30x10^{-8}[/tex]
[tex]\frac{4x^3}{0.0225-4x^2}=9.30*10^{-8}[/tex]
We make a simplification because x<<< 0.0225:
[tex]\frac{4x^3}{0.0225} =9.30*10^{-8}[/tex]
x = 8.058x10⁻⁴
[H₂] = 2*x = 1.61x10⁻³ M
Answer:
Equilibrium concentration of H2(g)
= 0.0016mol/l
Explanation:
For a gas equilibrium constant, kc;
Kc = [product]/[reactant] all in equilibrium gaseous state.
2H2S(g) --> 2H2(g) + S2(g)
Concentration of the reactant, H2S = 0.45/3 = 0.15mol/l
Initial Concentrations;
H2S = 0.15mol/l
H2 = 0
S2 = 0
Change in Concentrations;
H2S = -2y
H2 = 2y
S2 = y
Kc = 9.30 x 10^-8
Concentrations at equilibrium;
H2S = 0.15 - 2y
H2 = 2y
S2 = y
Inputting the Concentrations at equilibrium into the gas equilibrium constant;
(2y)^2* y/(0.15 - 2y)^2 = 9.3 x 10^-8
Solving for y;
y = 0.0008mol/l
Equilibrium concentration of H2(g) = 2y
= 2 * 0.0080mol/l
= 0.0016mol/l