To solve this problem we will apply the concepts related to the electric field, linear charge density and electrostatic force.
The electric field is
[tex]E = \frac{\lambda}{2\pi \epsilon_0 r}[/tex]
Here,
[tex]\lambda[/tex]= Linear charge density
[tex]\epsilon_0[/tex] = Permittivity of free space
r = Distance
The linear charge density can be written as,
Linear charge density is given as
[tex]\lambda = \frac{q}{L}[/tex]
Replacing,
[tex]E = \frac{\frac{q}{L}}{2\pi \epsilon_0 r}[/tex]
[tex]E = \frac{q}{2\pi \epsilon_0 rL}[/tex]
The initial and final electric Force can be written as function of the charge and the electric field as
[tex]F_i = E_i q[/tex]
[tex]F_f = E_f q[/tex]
If we replace the value for the electric field we have,
[tex]F_i = (\frac{q}{2\pi \epsilon_0 rL})q = (\frac{q^2}{2\pi \epsilon_0 rL})[/tex]
Length is one third at the end, then
[tex]F_f = (\frac{q}{2\pi \epsilon_0 r(L/3)})q = (\frac{3q^2}{2\pi \epsilon_0 rL})[/tex]
The ratio of the force is
[tex]\frac{F_f}{F_i} = \frac{(\frac{3q^2}{2\pi \epsilon_0 rL})}{(\frac{q^2}{2\pi \epsilon_0 rL})}[/tex]
[tex]\frac{F_f}{F_i} = 3[/tex]
Therefore the required ratio is 3