contestada

A 5.00 kg mass feels a gravitational
force of 3.07 x 10-8 N from a 7.50
kg mass. How far are they apart?

Respuesta :

Answer: Both masses are 0.285 m apart

Explanation:

According to the law of Universal Gravitation:

[tex]F=G\frac{(m_{1})(m_{2})}{d^2}[/tex]

Where:

[tex]F=3.07(10)^{-8} N[/tex] is the gravitational force between the masses

[tex]G=6.674x10^{-11}\frac{m^{3}}{kgs^{2}}[/tex]is the gravitational constant

[tex]m_{1}=5 kg[/tex]  is the mass of the first object

[tex]m_{2}=7.5 kg[/tex]   is the mass of the second object

[tex]d[/tex] is the distance between the objects

Isolating [tex]d[/tex]:

[tex]d=\sqrt{\frac{Gm_{1}m_{2}}{F}}[/tex]

[tex]d=\sqrt{\frac{(6.674x10^{-11}\frac{m^{3}}{kgs^{2}})(5 kg)(7.5 kg)}{3.07(10)^{-8} N}}[/tex]

[tex]d=0.285 m[/tex] This is the distance between both objects

Answer:

0.285 m apart

Explanation:

works in acellus!

ACCESS MORE