Respuesta :
Answer: Both masses are 0.285 m apart
Explanation:
According to the law of Universal Gravitation:
[tex]F=G\frac{(m_{1})(m_{2})}{d^2}[/tex]
Where:
[tex]F=3.07(10)^{-8} N[/tex] is the gravitational force between the masses
[tex]G=6.674x10^{-11}\frac{m^{3}}{kgs^{2}}[/tex]is the gravitational constant
[tex]m_{1}=5 kg[/tex] is the mass of the first object
[tex]m_{2}=7.5 kg[/tex] is the mass of the second object
[tex]d[/tex] is the distance between the objects
Isolating [tex]d[/tex]:
[tex]d=\sqrt{\frac{Gm_{1}m_{2}}{F}}[/tex]
[tex]d=\sqrt{\frac{(6.674x10^{-11}\frac{m^{3}}{kgs^{2}})(5 kg)(7.5 kg)}{3.07(10)^{-8} N}}[/tex]
[tex]d=0.285 m[/tex] This is the distance between both objects