Answer:
[tex]v(0)=0\\v(1)=-3.9\ m/s\\v(2)=-21.6\ m/s\\v(3)=-53.1\ m/s[/tex]
Explanation:
Instant Velocity
Given the position as a function of time x(t), the instant velocity is the derivative of the function:
[tex]v(t)=x'(t)[/tex]
We are given the position as
[tex]x(t)=-2.3t^3+1.5t^2+9[/tex]
The derivative of x is
[tex]v(t)=x'(t)=-6.9t^2+3.0t[/tex]
A) Let's compute v(0)
[tex]v(0)=-6.9(0)^2+3.0(0)=0[/tex]
B)
[tex]v(1)=-6.9(1)^2+3.0(1)[/tex]
[tex]v(1)=-3.9\ m/s[/tex]
C)
[tex]v(2)=-6.9(2)^2+3.0(2)[/tex]
[tex]v(2)=-21.6\ m/s[/tex]
D)
[tex]v(3)=-6.9(3)^2+3.0(3)[/tex]
[tex]v(3)=-53.1\ m/s[/tex]