Answer:
The sum of its 30 terms is 38167.5
Step-by-step explanation:
Given:
The First term in the AP is -504
The Sum of its 9 terms is -126
To Find:
The sum of its 30 terms = ?
Solution:
The sum of n terms of an AP:
[tex]S_n = (\frac{n}{2} ) [ 2 a_1 + ( n - 1 ) d ][/tex]
The sum of 9 terms of an AP:
[tex]S_9 = (\frac{9 }{2} ) [ 2(-504) + ( 9 - 1 )d ][/tex]
[tex]S_9 = (4.5 )[ 2 (-504)+ ( 8 ) d ][/tex]
[tex](4.5 )(2)(-504) + (4.5) 8 d = - 126[/tex]
(-4536) +36d = -126
36 d = -126+4536
36 d= 4410
[tex]d= \frac{4410}{36}[/tex]
d = 122.5
The sum of its 30 terms is
[tex]S_{30} = ( \frac{30 }{2 }) [ 2 (-504) + ( 30-1)(122.5) ][/tex]
[tex]S_{30} =(15) [ 2 (-504) + ( 29)(122.5) ][/tex]
[tex]S_{30} = [ 2 (-504)(15) + ( 29)(122.5)(15) ][/tex]
[tex]S_{30} = [ -15120 + 53287.5 ][/tex]
[tex]s_{30} = 38.167.5[/tex]