Answer:
10%
Step-by-step explanation:
Given: CP of lemon is $600.
3/4 of lemon sold at 20% loss
Remaining lemon at 20% gain.
Considering the quantity of lemon remain constant.
Cost price of 3/4 of lemon= [tex]\frac{3}{4} \times 600= \$450[/tex]
As given, 3/4 of lemon sold at 20% loss.
∴ Selling price of [tex]\frac{3}{4}\ of\ lemon= 450- \frac{20}{100}\times 450[/tex]
Selling price= [tex]450- 90= \$ 360[/tex]
Hence, selling price of 3/4 lemon is $360.
Now, the cost price of remaining lemon [tex](1-\frac{3}{4} )= (\$ 600-\$ 450)[/tex]
∴ The cost price of [tex]\frac{1}{4}\ lemon = \$ 150[/tex]
As given, remaining [tex]\frac{1}{4} lemon\ sold\ at\ gain\ of\ 20\%[/tex]
∴ Selling price of [tex]\frac{1}{4} \ lemon= (150\times \frac{20}{100}+150)[/tex]
Selling price of [tex]\frac{1}{4} \ of\ lemon= (30+150)[/tex]
Hence, selling price of 1/4 lemon is $180
Loss\profit percent= [tex]\frac{(SP-CP)}{CP} \times 100[/tex]
∴ Loss\profit percent= [tex]\frac{60}{600} \times 100= 10\%[/tex]
Hence, the loss percentage is 10%