A uniformly charged disk with radius R = 40.0 cm and uniform charge density σ = 7.20 ✕ 10−3 C/m2 lies in the xy-plane, with its center at the origin. What is the electric field (in MN/C) due to the charged disk at the following locations? (a) z = 5.00 cm MN/C (b) z = 10.0 cm MN/C (c) z = 50.0 cm MN/C (d) z = 200 cm MN/C

Respuesta :

Answer:

(a) 356.313 MN/C

(b) 307.909 MN/C

(c) 89.078 MN/C

(d) 7.728 MN/C

Explanation:

[tex]E_{z} = K{\sigma}2\pi(1-\frac{Z}{\sqrt{Z^{2} +R^{2}}})[/tex]

where;

[tex]E_{z}[/tex] is Electric field due to location "Z"

K is coloumb's constant = 8.99 X 10⁹ Nm²/C²

[tex]{\sigma}[/tex] is charge density, = 7.20 X 10⁻³ C/m²

R is the radius of the charged disk = 40.0cm

Step 1: calculate the electric field due to location 5.0 cm

[tex]E_{z} = K{\sigma}2\pi(1-\frac{Z}{\sqrt{Z^{2} +R^{2}}})[/tex]

[tex]E_{5} = 8.99 X 10^9 X 7.20 X 10^{-3} X 2\pi(1-\frac{5}{\sqrt{5^{2}+40^{2}}})[/tex]

[tex]E_{5} =4.0675 X 10^8(1-\frac{5}{\sqrt{5^{2} +40^{2}}})[/tex]

[tex]E_{5} =4.0675 X 10^8(1- 0.124)[/tex]

[tex]E_{5} =4.0675 X 10^8(0.876)[/tex]

[tex]E_{5} = 3.56313 X10^8 \frac{N}{C}[/tex] = 356.313 MN/C

Step 2: calculate the electric field due to location 10.0 cm

[tex]E_{10} =4.0675 X 10^8(1-\frac{10}{\sqrt{10^{2} +40^{2}}})[/tex]

[tex]E_{10} =4.0675 X 10^8(1- 0.243)[/tex]

[tex]E_{10} =4.0675 X 10^8(0.757)[/tex]

[tex]E_{10} = 3.07909 X10^8 \frac{N}{C}[/tex] = 307.909 MN/C

Step 3: calculate the electric field due to location 50.0 cm

[tex]E_{50} =4.0675 X 10^8(1-\frac{50}{\sqrt{50^{2}+40^{2}}})[/tex]

[tex]E_{50} =4.0675 X 10^8(1- 0.781)[/tex]

[tex]E_{50} =4.0675 X 10^8(0.219)[/tex]

[tex]E_{50} = 8.90783 X10^7 \frac{N}{C}[/tex] = 89.078 MN/C

Step 4: calculate the electric field due to location 200.0 cm

[tex]E_{200} =4.0675 X 10^8(1-\frac{200}{\sqrt{200^{2} +40^{2}}})[/tex]

[tex]E_{200} =4.0675 X 10^8(1- 0.981)[/tex]

[tex]E_{200} =4.0675 X 10^8(0.019)[/tex]

[tex]E_{200} = 7.72825 X10^6 \frac{N}{C}[/tex] = 7.728 MN/C

(a) The elctric field at z = 5cm is 356 MN/C

(b) The elctric field at z = 10cm is 308 MN/C

(c) The elctric field at z = 50cm is 89 MN/C

(d) The elctric field at z = 200cm is 7.7 MN/C

Electric field by a uniform disk:

The electric field due to a uniformly charged disk of radius R and uniform charged density σ, at a distance z above the center of the disk is given by:

[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})[/tex]

given that :

σ = 7.2×10⁻³C/m²

and R = 40cm

(i) The electric field at z = 5cm

[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{5}{\sqrt{5^2+40^2}})[/tex]

E = 356 MN/C

(ii) The electric field at z = 5cm

[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{10}{\sqrt{10^2+40^2}})[/tex]

E = 308 MN/C

(iii) The electric field at z = 5cm

[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{50}{\sqrt{50^2+40^2}})[/tex]

E = 89 MN/C

(iv) The electric field at z = 5cm

[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{200}{\sqrt{200^2+40^2}})[/tex]

E = 7.7 MN/C

Learn more about electric field:

https://brainly.com/question/15800304?referrer=searchResults

ACCESS MORE