Respuesta :
Answer:
(a) 356.313 MN/C
(b) 307.909 MN/C
(c) 89.078 MN/C
(d) 7.728 MN/C
Explanation:
[tex]E_{z} = K{\sigma}2\pi(1-\frac{Z}{\sqrt{Z^{2} +R^{2}}})[/tex]
where;
[tex]E_{z}[/tex] is Electric field due to location "Z"
K is coloumb's constant = 8.99 X 10⁹ Nm²/C²
[tex]{\sigma}[/tex] is charge density, = 7.20 X 10⁻³ C/m²
R is the radius of the charged disk = 40.0cm
Step 1: calculate the electric field due to location 5.0 cm
[tex]E_{z} = K{\sigma}2\pi(1-\frac{Z}{\sqrt{Z^{2} +R^{2}}})[/tex]
[tex]E_{5} = 8.99 X 10^9 X 7.20 X 10^{-3} X 2\pi(1-\frac{5}{\sqrt{5^{2}+40^{2}}})[/tex]
[tex]E_{5} =4.0675 X 10^8(1-\frac{5}{\sqrt{5^{2} +40^{2}}})[/tex]
[tex]E_{5} =4.0675 X 10^8(1- 0.124)[/tex]
[tex]E_{5} =4.0675 X 10^8(0.876)[/tex]
[tex]E_{5} = 3.56313 X10^8 \frac{N}{C}[/tex] = 356.313 MN/C
Step 2: calculate the electric field due to location 10.0 cm
[tex]E_{10} =4.0675 X 10^8(1-\frac{10}{\sqrt{10^{2} +40^{2}}})[/tex]
[tex]E_{10} =4.0675 X 10^8(1- 0.243)[/tex]
[tex]E_{10} =4.0675 X 10^8(0.757)[/tex]
[tex]E_{10} = 3.07909 X10^8 \frac{N}{C}[/tex] = 307.909 MN/C
Step 3: calculate the electric field due to location 50.0 cm
[tex]E_{50} =4.0675 X 10^8(1-\frac{50}{\sqrt{50^{2}+40^{2}}})[/tex]
[tex]E_{50} =4.0675 X 10^8(1- 0.781)[/tex]
[tex]E_{50} =4.0675 X 10^8(0.219)[/tex]
[tex]E_{50} = 8.90783 X10^7 \frac{N}{C}[/tex] = 89.078 MN/C
Step 4: calculate the electric field due to location 200.0 cm
[tex]E_{200} =4.0675 X 10^8(1-\frac{200}{\sqrt{200^{2} +40^{2}}})[/tex]
[tex]E_{200} =4.0675 X 10^8(1- 0.981)[/tex]
[tex]E_{200} =4.0675 X 10^8(0.019)[/tex]
[tex]E_{200} = 7.72825 X10^6 \frac{N}{C}[/tex] = 7.728 MN/C
(a) The elctric field at z = 5cm is 356 MN/C
(b) The elctric field at z = 10cm is 308 MN/C
(c) The elctric field at z = 50cm is 89 MN/C
(d) The elctric field at z = 200cm is 7.7 MN/C
Electric field by a uniform disk:
The electric field due to a uniformly charged disk of radius R and uniform charged density σ, at a distance z above the center of the disk is given by:
[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})[/tex]
given that :
σ = 7.2×10⁻³C/m²
and R = 40cm
(i) The electric field at z = 5cm
[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{5}{\sqrt{5^2+40^2}})[/tex]
E = 356 MN/C
(ii) The electric field at z = 5cm
[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{10}{\sqrt{10^2+40^2}})[/tex]
E = 308 MN/C
(iii) The electric field at z = 5cm
[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{50}{\sqrt{50^2+40^2}})[/tex]
E = 89 MN/C
(iv) The electric field at z = 5cm
[tex]E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})\\\\E = \frac{7.2\times10^{-3}}{2\8.85\times10^{-12}}(1-\frac{200}{\sqrt{200^2+40^2}})[/tex]
E = 7.7 MN/C
Learn more about electric field:
https://brainly.com/question/15800304?referrer=searchResults