Respuesta :
Answer:
a)[tex]U=17,159.8J[/tex]
b)[tex]K=17,159.8J[/tex]
c) [tex]v=44.93m/s[/tex]
Explanation:
The information we have is
mass: [tex]m=17kg[/tex]
height: [tex]h=103m[/tex]
and we also know the acceleration of gravity is: [tex]g=9.8m/s^2[/tex]
a) the potential energy is:
[tex]U=mgh\\U=(17kg)(9.8m/s^2)(103m)=17,159.8J[/tex]
b) let's call the potential energy at the top of the cliff [tex]U[/tex] and at the bottom [tex]U_{2}[/tex], and call the kinetic energy at the top of the cliff [tex]K[/tex] and at the bottom of the cliff [tex]K_{2}[/tex]. The law of conservation of energy tells us that:
[tex]U+K=U_{2}+K_{2}[/tex]
and because at the top of the cliff the rock does not move the kinetic energy there is zero. [tex]K=0[/tex]. In addition, when reaching the bottom of the cliff the height is [tex]h=0[/tex], so that the potential energy at the bottom is zero: [tex]U_{2}=0[/tex]
so:
[tex]U+0=0+K_{2}[/tex]
[tex]U=K_{2}[/tex]
The kinetic energy when the stone touches the ground is the same as the potential energy at the top of the cliff:
[tex]K=17,159.8J[/tex]
c) to find the speed we will use the formula for kinetic energy
[tex]K=\frac{1}{2} mv^2[/tex]
clearing for the speed:
[tex]v=\sqrt{\frac{2K}{m} }[/tex]
and we already know the kinetic energy as the rock strikes the ground: [tex]K=17,159.8J[/tex]
so the speed:
[tex]v=\sqrt{\frac{2(17,159.8J)}{(17kg)} }[/tex]
[tex]v=\sqrt{\frac{34,319.6J}{17kg} }[/tex]
[tex]v=\sqrt{2,018.8J/kg}[/tex]
[tex]v=44.93m/s[/tex]