Respuesta :
Answer:
There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.
Step-by-step explanation:
We solve this problem building the Venn's diagram of these probabilities.
I am going to say that:
A is the probability that a UH student checks out books on history.
B is the probability that a UH students checks out books on science.
We have that:
[tex]A = a + (A \cap B)[/tex]
In which a is the probability that a UH student checks a book on history but not on science and [tex]A \cap B[/tex] is the probability that a UH student checks books both on history and science.
By the same logic, we have that:
[tex]B = b + (A \cap B)[/tex]
What is the probability that a randomly selected UH student checks out a history book or a science book or both?
[tex]P = a + b + (A \cap B)[/tex]
We start finding these values from the intersection.
6% check out books on both history and science. So [tex]A \cap B = 0.06[/tex]
28% of all UH students check out books on science. So [tex]B = 0.28[/tex]
[tex]B = b + (A \cap B)[/tex]
[tex]0.28 = b + 0.06[/tex]
[tex]b = 0.22[/tex]
12% of all UH students check out books on history
[tex]A = a + (A \cap B)[/tex]
[tex]0.12 = a + 0.06[/tex]
[tex]a = 0.06[/tex]
So
[tex]P = a + b + (A \cap B) = 0.06 + 0.22 + 0.06 = 0.34[/tex]
There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.