Respuesta :

As given by the question

There are given that the base of the triangle is (4x) and the height is (2x+5).

Now,

From the formula of area of a triangle;

[tex]\text{Area of triangle=}\frac{\text{1}}{2}\times base\times height[/tex]

Then,

Put the both value into the above formula

So,

[tex]\begin{gathered} \text{Area of triangle=}\frac{\text{1}}{2}\times base\times height \\ \text{Area of triangle=}\frac{\text{1}}{2}\times4x\times(2x+5) \\ \text{Area of triangle=}\frac{\text{1}}{2}\times4x(2x+5) \end{gathered}[/tex]

Then,

[tex]\begin{gathered} \text{Area of triangle=}\frac{\text{1}}{2}\times4x(2x+5) \\ \text{Area of triangle=}\frac{\text{1}}{2}\times(8x^2+20x) \\ \text{Area of triangle=}\frac{(8x^2+20x)}{2} \\ \text{Area of triangle=}4x^2+10x \end{gathered}[/tex]

Hence, the area of a triangle is shown below:

[tex]\text{Area of triangle=4x}^2+10x[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico