Answer: The required ordered pair (p, q) is (-7, -12).
Step-by-step explanation: Given that (x+2)(x-1) divides the following polynomial f(x) :
[tex]f(x)=x^5-x^4+x^3-px^2+qx+4.[/tex]
We are to find the ordered pair (p,q).
We have the following theorem :
Factor theorem : If (x-a) divides a polynomial h(x), then h(a) = 0.
According to the given information, we can say that (x+2) divides f(x). So, we get
[tex]f(-2)=0\\\\\Rightarrow (-2)^5-(-2)^4+(-2)^3-p(-2)^2+q(-2)+4=0\\\\\Rightarrow -32-16-8-4p-2q+4=0\\\\\Rightarrow 2p+q=-26~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
Also, (x-1) is a factor of f(x). So,
[tex]f(1)=0\\\\\Rightarrow (1)^5-(1)^4+(1)^3-p(1)^2+q(1)+4=0\\\\\Rightarrow 1-1+1-p+q+4=0\\\\\Rightarrow p-q=5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]
Adding equations (i) and (ii), we get
[tex]3p=-21\\\\\Rightarrow p=-7.[/tex]
From equation (ii), we get
[tex]-7-q=5\\\\\Rightarrow q=-12.[/tex]
Thus, the required ordered pair (p, q) is (-7, -12).