Respuesta :
Answer:
option D
Explanation:
given,
uniform length of cylinder = 1 m
diameter of the cylinder = 10 cm = 0.1 m
Eels have been recorded to spin = 14 rev/s
camera records at = 120 frames per second
time = [tex]\dfrac{1}{120}\ s/frame[/tex]
angle at which eel rotate = ?
ω = 14 rev/s
ω = 14 x 2 π rad/s
ω = 28 π rad/s
angle at which eel rotate
θ = ω t
θ = [tex]28\pi\times \dfrac{1}{120}[/tex]
θ = 0.733 rad
θ =[tex]0.733 \times \dfrac{180^0}{2\pi}[/tex]
θ =[tex]42^0[/tex]
Hence, the correct answer is option D
The angle of rotation is the angle at which the object is rotate about the fixed point.
The angle at which the eel rotates from one frame to next frame is 42 degree.
Given that, we can treat the eel as a uniform cylinder.
So, uniform length of cylinder = 1 [tex]\rm m[/tex] and diameter of the cylinder = 10 [tex]\rm cm[/tex] = 0.1 [tex]\rm m[/tex]. Eels have been recorded to spin at up to 14 rev/s when feeding in this way. The camera records at 120 frames per second.
Time taken by the camera to record one frame is [tex]t\;=\; \dfrac {1} {120} \;\rm s/\rm frame[/tex]
Revolution done by eel in radian per second is 14.
Angular Velocity is [tex]\omega\;=\; 14\;\times\;2\pi\;\times\;0.1\;\rm rad/s[/tex].
The angle of rotation can be calculated by the formula given below.
Angle of rotation [tex]\theta=\omega\;\times\;t[/tex].
Substituting the values in the above formula, the angle of rotation is,
[tex]\theta\;=\;14\;\times\;2\;\times\;3.14\;\times\;0.1\;\times\;\dfrac {1}{120}\;\rm rad[/tex]
[tex]\theta=0.0733\;\rm rad[/tex]
[tex]\theta=0.0733\;\times\;\dfrac {360^\circ}{2\pi}[/tex]
[tex]\theta=41.5^\circ[/tex] or [tex]42^\circ[/tex].
The angle at which the eel rotates from one frame to next frame is 42 degree.
For more details, follow the link given below.
https://brainly.com/question/17671314.