Answer:
[tex]1.13333\times 10^{-8}\ s[/tex] and [tex]0.7\times 10^{-8}\ s[/tex]
Explanation:
Light which travels from the crackers reaches the detector at [tex]c=3\times 10^{8}\ m/s[/tex]
[tex]\Delta x_1[/tex] = Distance at which event 1 leaves a char mark = 3.4 m
[tex]\Delta x_2[/tex] = Distance at which event 2 leaves a char mark = 2.1 m
The speed of light in a medium is a universal constant
[tex]c=\dfrac{\Delta x_1}{\Delta t_1}\\\Rightarrow \Delta t_1=\dfrac{\Delta x_1}{c}\\\Rightarrow \Delta t_1=\dfrac{3.4}{3\times 10^8}\\\Rightarrow \Delta t_1=1.13333\times 10^{-8}\ s[/tex]
[tex]c=\dfrac{\Delta x_2}{\Delta t_2}\\\Rightarrow \Delta t_2=\dfrac{\Delta x_2}{c}\\\Rightarrow \Delta t_2=\dfrac{2.1}{3\times 10^8}\\\Rightarrow \Delta t_2=0.7\times 10^{-8}\ s[/tex]
The pulse will be detected at [tex]1.13333\times 10^{-8}\ s[/tex] and [tex]0.7\times 10^{-8}\ s[/tex]