Respuesta :

frika

Answer:

29

Step-by-step explanation:

Use definition of conditional probability:

[tex]P(A|B)=\dfrac{P(A\cap B)}{P(B)},[/tex]

where

A = the student is a freshman,

B = the student is a male

From the table,

[tex]P(B)=\dfrac{4+6+2+2}{4+6+2+2+3+4+6+3}=\dfrac{14}{30}=\dfrac{7}{15}\\ \\P(A\cap B)=\dfrac{4}{4+6+2+2+3+4+6+3}=\dfrac{4}{30}=\dfrac{2}{15}[/tex]

So,

[tex]P(A|B)=\dfrac{\frac{2}{15}}{\frac{7}{15}}=\dfrac{2}{7}\approx 0.29=29\%[/tex]

ACCESS MORE