Answer:
The resonant frequency of this circuit is 1190.91 Hz.
Explanation:
Given that,
Inductance, [tex]L=9.4\ mH=9.4\times 10^{-3}\ H[/tex]
Resistance, R = 150 ohms
Capacitance, [tex]C=1.9\ \mu F=1.9\times 10^{-6}\ C[/tex]
At resonance, the capacitive reactance is equal to the inductive reactance such that,
[tex]X_C=X_L[/tex]
[tex]2\pi f_o L=\dfrac{1}{2\pi f_oC}[/tex]
f is the resonant frequency of this circuit
[tex]f_o=\dfrac{1}{2\pi \sqrt{LC}}[/tex]
[tex]f_o=\dfrac{1}{2\pi \sqrt{9.4\times 10^{-3}\times 1.9\times 10^{-6}}}[/tex]
[tex]f_o=1190.91\ Hz[/tex]
So, the resonant frequency of this circuit is 1190.91 Hz. Hence, this is the required solution.