Respuesta :
Answer:
The 95% confidence interval is given by: (0.226, 0.240)
On this case we can't conclude that we have a significant reduction on the reaction time since the upper bounf of the interval is higher than the value of 0.239.
Step-by-step explanation:
1) Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
[tex]\bar X =0.233[/tex] represent the sample mean for the sample
[tex]\mu[/tex] population mean (variable of interest)
s=0.021 represent the sample standard deviation
n=41 represent the sample size
2) Calculate the confidence interval
Since the sample size is large enough n>30 but we don't know the population deviation. The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
First we need to calculate the degrees of freedom given by:
[tex]df=n-1=41-1=40[/tex]
Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.025,40)".And we see that [tex]t_{\alpha/2}=2.02[/tex]
Now we have everything in order to replace into formula (1):
[tex]0.233-2.02\frac{0.021}{\sqrt{41}}=0.226[/tex]
[tex]0.233+2.02\frac{0.021}{\sqrt{41}}=0.240[/tex]
The 95% confidence interval is given by: (0.226, 0.240)
On this case we can't conclude that we have a significant reduction on the reaction time since the upper bounf of the interval is higher than the value of 0.239.