Respuesta :
Answer:
600 rad/s²
450 rad/s
21 m/s²
Explanation:
r = Radius
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity
[tex]\alpha[/tex] = Angular acceleration
t = Time taken
Linear acceleration is given by
[tex]a=r\alpha\\\Rightarrow \alpha=\dfrac{a}{r}\\\Rightarrow \alpha=\dfrac{1.5}{0.25\times 10^{-2}}\\\Rightarrow \alpha=600\ rad/s^2[/tex]
Angular acceleration of the yo-yo is 600 rad/s²
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=0+600\times 0.75\\\Rightarrow \omega_f=450\ rad/s[/tex]
angular velocity of the yo-yo is 450 rad/s
[tex]a=r\alpha\\\Rightarrow a=3.5\times 10^{-2}\times 600\\\Rightarrow a=21\ m/s^2[/tex]
Tangential acceleration of a point on its edge is 21 m/s²
The angular acceleration, angular velocity and tangential acceleration are;
A) 600 rad/s²
B) 450 rad/s,
C) 21 m/s²
What is the angular velocity and acceleration?
A) We are given;
Radius; r = 0.25 cm = 0.0025 m
Linear acceleration; a = 1.5 m/s²
Formula for Angular Acceleration is;
α = a/r
Thus; α = 1.5/0.0025
α = 600 rad/s²
B) We are given;
time; t = 0.75 s
final angular velocity is gotten from;
ω_f = ω_i + αt
ω_f = 0 + (600 * 0.75)
ω_f = 450 rad/s
C) We are given;
Radius; r = 3.5 cm = 0.035 m
Formula for tangential acceleration is;
α_t = rα
α = 0.035 * 600
α = 21 m/s²
Read more about angular acceleration at; https://brainly.com/question/20912191