Respuesta :
Answer:
176.99113 seconds
555165.24756 J
Explanation:
d = Diameter of wheel = 1.5 m
r = Radius = [tex]\dfrac{d}{2}=\dfrac{1.5}{2}=0.75\ m[/tex]
m = Mass of wheel = 250 kg
[tex]\tau[/tex] = Torque = 50 Nm
[tex]\omega[/tex] = Angular speed = 1200 rpm
Moment of inertia is given by
[tex]I=\dfrac{1}{2}mr^2\\\Rightarrow I=\dfrac{1}{2}250\times 0.75^2\\\Rightarrow I=70.3125\ kgm^2[/tex]
Angular acceleration is given by
[tex]\alpha=\dfrac{\tau}{I}\\\Rightarrow \alpha=\dfrac{50}{70.3125}\\\Rightarrow \alpha=0.71\ rad/s^2[/tex]
Time taken is given by
[tex]t=\dfrac{\omega}{\alpha}\\\Rightarrow t=\dfrac{1200\times \dfrac{2\pi}{60}}{0.71}\\\Rightarrow t=176.99113\ s[/tex]
The time it takes for the flywheel to reach top angular speed is 176.99113 seconds
Kinetic energy is given by
[tex]K=\dfrac{1}{2}I\omega^2\\\Rightarrow K=\dfrac{1}{2}70.3125\times (1200\times \dfrac{2\pi}{60})^2\\\Rightarrow K=555165.24756\ J[/tex]
The energy is stored in the flywheel is 555165.24756 J