Answer:
80.6 N/m
Explanation:
mass (m) = 63 kg
time (s) = 44 s
number of oscillations (n) = 8
stretched length of the cord (L) = 23 m
we can calculate the spring constant of the cord from the formula below
f = [tex]\frac{1}{2π}[/tex] x [tex]\sqrt{\frac{k}{m} }[/tex] ...equation 1
where
f = frequency
k = spring constant
m = mass
frequency =[tex]\frac{number of oscillation}{time}[/tex]
frequency =[tex]\frac{8}{44}[/tex] = 0.18
now we can input all the required values into the equation 1
0.18 = [tex]\frac{1}{2π}[/tex] x [tex]\sqrt{\frac{k}{63} }[/tex]
0.18 x 2π = [tex]\sqrt{\frac{k}{63} }[/tex]
1.13 = [tex]\sqrt{\frac{k}{63} }[/tex]
[tex]1.13^{2}[/tex] = [tex]\frac{k}{63}[/tex]
k = 63 x 1.28 = 80.6 N/m