Answer:
Length of ladder = 45.30 ft
Step-by-step explanation:
Given data:
Distance between the bottom of the ladder and side of house = 14 ft
Angle of elevation of the ladder = 72°
To find length of the ladder.
From the data given to us we can construct a right triangle ABC.
For the Δ ABC
AC= 14 ft
∠A= 72°
We can apply trigonometric ratio to find side AB which is the length of the ladder.
[tex]\cos72\°=\frac{AC}{AB}[/tex] [ ∵ [tex]\cos\theta=\frac{Adjacent\ side}{Hypotenuse}[/tex] ]
Multiplying both sides by AB.
[tex]AB\cos72\°=\frac{AC}{AB}\times AB[/tex]
[tex]AB\cos72\°=AC[/tex]
Dividing both sides by cos72°
[tex]\frac{AB\cos72\°}{cos72\°}=\frac{AC}{cos72\°}[/tex]
[tex]AB=\frac{AC}{cos72\°}[/tex]
Substituting value of AC and cos 72°
[tex]AB=\frac{14}{0.309}[/tex]
[tex]AB=45.30\ ft[/tex]
Thus, length of the ladder = 45.30 ft